Impact of acamprosate on plasma amyloid-β precursor protein in youth: a pilot analysis in fragile X syndrome-associated and idiopathic autism spectrum disorder suggests a pharmacodynamic protein marker.

نویسندگان

  • Craig A Erickson
  • Balmiki Ray
  • Bryan Maloney
  • Logan K Wink
  • Katherine Bowers
  • Tori L Schaefer
  • Christopher J McDougle
  • Deborah K Sokol
  • Debomoy K Lahiri
چکیده

BACKGROUND Understanding of the pathophysiology of autism spectrum disorder (ASD) remains limited. Brain overgrowth has been hypothesized to be associated with the development of ASD. A derivative of amyloid-β precursor protein (APP), secreted APPα (sAPPα), has neuroproliferative effects and has been shown to be elevated in the plasma of persons with ASD compared to control subjects. Reduction in sAPPα holds promise as a novel molecular target of treatment in ASD. Research into the neurochemistry of ASD has repeatedly implicated excessive glutamatergic and deficient GABAergic neurotransmission in the disorder. With this in mind, acamprosate, a novel modulator of glutamate and GABA function, has been studied in ASD. No data is available on the impact of glutamate or GABA modulation on sAPPα function. METHODS Plasma APP derivative levels pre- and post-treatment with acamprosate were determined in two pilot studies involving youth with idiopathic and fragile X syndrome (FXS)-associated ASD. We additionally compared baseline APP derivative levels between youth with FXS-associated or idiopathic ASD. RESULTS Acamprosate use was associated with a significant reduction in plasma sAPP(total) and sAPPα levels but no change occurred in Aβ40 or Aβ42 levels in 15 youth with ASD (mean age: 11.1 years). Youth with FXS-associated ASD (n = 12) showed increased sAPPα processing compared to age-, gender- and IQ-match youth with idiopathic ASD (n = 11). CONCLUSIONS Plasma APP derivative analysis holds promise as a potential biomarker for use in ASD targeted treatment. Reduction in sAPP (total) and sAPPα may be a novel pharmacodynamic property of acamprosate. Future study is required to address limitations of the current study to determine if baseline APP derivative analysis may predict subgroups of persons with idiopathic or FXS-associated ASD who may respond best to acamprosate or to potentially other modulators of glutamate and/or GABA neurotransmission.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finding novel distinctions between the sAPPα-mediated anabolic biochemical pathways in Autism Spectrum Disorder and Fragile X Syndrome plasma and brain tissue

UNLABELLED Autism spectrum disorder (ASD) and Fragile X syndrome (FXS) are developmental disorders. No validated blood-based biomarkers exist for either, which impedes bench-to-bedside approaches. Amyloid-β (Aβ) precursor protein (APP) and metabolites are usually associated with Alzheimer's disease (AD). APP cleavage by α-secretase produces potentially neurotrophic secreted APPα (sAPPα) and the...

متن کامل

Reversal of Fragile X Phenotypes by Manipulation of AβPP/Aβ Levels in Fmr1KO Mice

Fragile X syndrome (FXS) is the most common form of inherited intellectual disability and the leading known genetic cause of autism. Fragile X mental retardation protein (FMRP), which is absent or expressed at substantially reduced levels in FXS, binds to and controls the postsynaptic translation of amyloid β-protein precursor (AβPP) mRNA. Cleavage of AβPP can produce β-amyloid (Aβ), a 39-43 am...

متن کامل

Minocycline blocks c-terminal fragments of amyloid precursor protein-induced neurotoxicity by inhibition of cytochrome c release and caspase-12 activation

Minocycline is a second-generation tetracycline that effectively crosses the blood-brain barrier. It has remarkable neuroprotective qualities in models of cerebral ischaemia, traumatic brain injury, Huntington’s and Parkinson’s diseases. However, there is no evidence about neuroprotective effects of minocycline on AD. Alzheimer’s disease (AD) is a neurodegenerative disorder characterized neurop...

متن کامل

Minocycline blocks c-terminal fragments of amyloid precursor protein-induced neurotoxicity by inhibition of cytochrome c release and caspase-12 activation

Minocycline is a second-generation tetracycline that effectively crosses the blood-brain barrier. It has remarkable neuroprotective qualities in models of cerebral ischaemia, traumatic brain injury, Huntington’s and Parkinson’s diseases. However, there is no evidence about neuroprotective effects of minocycline on AD. Alzheimer’s disease (AD) is a neurodegenerative disorder characterized neurop...

متن کامل

Signaling of noncomprehension in communication breakdowns in fragile X syndrome, Down syndrome, and autism spectrum disorder.

The ability to indicate a failure to understand a message is a critical pragmatic (social) language skill for managing communication breakdowns and supporting successful communicative exchanges. The current study examined the ability to signal noncomprehension across different types of confusing message conditions in children and adolescents with fragile X syndrome (FXS), Down syndrome (DS), au...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of psychiatric research

دوره 59  شماره 

صفحات  -

تاریخ انتشار 2014